エッジ抽出による 画像検索精度絞込み

木下研究室 200302666 梶間浩幸

研究の背景

ネット上に大量の画像データが存在。 SaaS等のデータを媒介とした事業・ コンテンツの普及

会社に限らず個人レベルでの膨大な 画像データの保有

所望する画像データのより正確、より効率的な検索技術の有用性

代表的な画像検索技術

 TBIR(Text-Based Image Retrieval) 画像データに付加されたテキスト、 キーワードに基づいて画像を検索

• CBIR(Content-Based Image Retrieval) 画像の色、構図など画像自体の特徴に基づいて画像を検索

検索技術用例(TBIR)

・電子図書館蔵書検索 検索時に著者やタイトル、内容を検索情報として

提示し、所望する蔵書の情報、画像を入手する。 当大学図書館OPAC (Online Public Access Catalog)が挙げられる。

神 奈 川 大 学 図 書 館 蔵 書 検 索 Online Public Access Catalog 書誌検索(標準)					
詳細検索 検 望 タイトル	Q			域館 全館 料種別 全て (例: ノルウ:	・
著者名 キーワー 出版者 出版年	森)			(例:村上 種 (例:情報理 (例:岩波書	論)
ISBN	9784062	(例: :035162)	ISSN 0913	(例 4409)	J:

検索技術用例(CBIR)

•画像検索エンジン『GazoPa』

画像分析技術で取得した特許を用いた日本発の

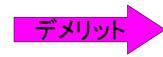
画像検索エンジン。

Web内で見かけた画像を 検索の際にそのまま指定 できる。また、Flashを利用 したdrawerで自作の絵を 検索情報として指定できる。

TBIR検索対象:キーワード


メリット

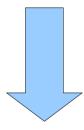
高速な検索が可能


デメリット

膨大な画像データに対する キーワードの手動付与は 非現実的

• CBIR検索対象: 視覚的情報

人の画像認識観点に 近い検索が可能



検索行動の多岐化による ユーザーへの検索負担

研究の目的

•用例における問題点

drawer検索は絵の大半が簡易的であり、 ユーザーの描いた曖昧な検索情報に基づい た検索精度の信憑性は薄くなってしまう

簡易情報からの情報抽出とそれを用いた検索精度の向上

画像の特徴量の1つであるエッジ(輪郭線)に注目を当て、それらを取り出した画像による当該画像検索の精度向上を提案

エッジ生成検索システム概要

元画像処理

元画像

- •グレースケール
- -2値化

処理

・エッジ抽出処理

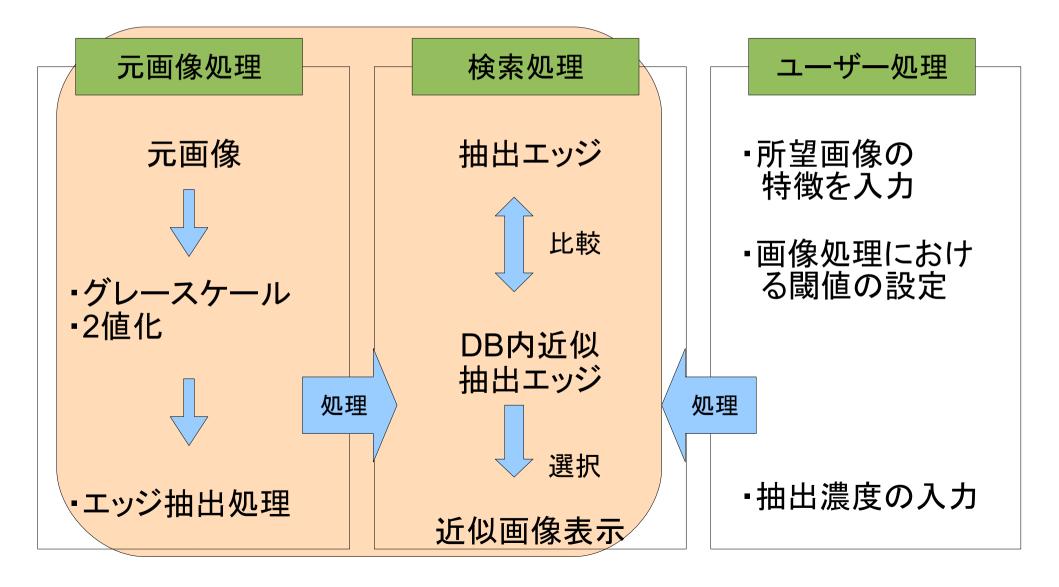
検索処理

抽出エッジ

DB内近似 抽出エッジ

選扔

近似画像表示

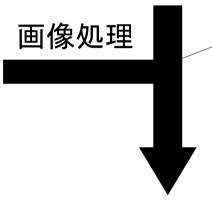

ユーザー処理

- ・所望画像の 特徴を入力
- ・画像処理における閾値の設定

処理

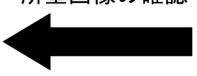
•抽出濃度の入力

エッジ生成検索システム概要


エッジ抽出画像検索ルート

画像データベース

画像処理

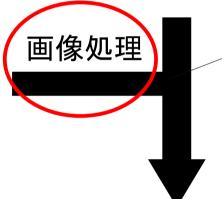

エッジ抽出後 画像データベース

類似画像

比較 類似度算出

所望画像の 入手 ユーザーによる 所望画像の確認

所望画像の 類似画像群


エッジ抽出プロセス

画像データベース

画像処理

エッジ抽出後 画像データベース

類似画像

比較 類似度算出

所望画像の 入手 ユーザーによる 所望画像の確認

所望画像の 類似画像群

エッジ抽出前処理

グレースケール: 白と黒の濃淡による画像表現方法。RGBの色情報を含まず、白と黒と灰色のみが色情報として使われ表現される。

グレースケール画像

エッジ抽出前処理

• 2値化:白と黒だけによる画像表現方法。 ある閾値xを決め、x以上の値を持つ画素 を黒とし、xより小さい値の画素を白として 表現する。

元画像

2値化画像

エッジ抽出処理

エッジ抽出:エッジ抽出時の方向成分と強 さは以下の計算式で表される。

$$fx = f(x+1,y) - f(x,y)$$

 $fy = f(x,y+1) - f(x,y)$

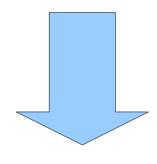
$$\sqrt{fx^2 + fy^2}$$

元画像

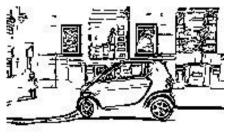
エッジ抽出画像

サンプル画像への抽出処理

サンプル1


サンプル2

サンプル3



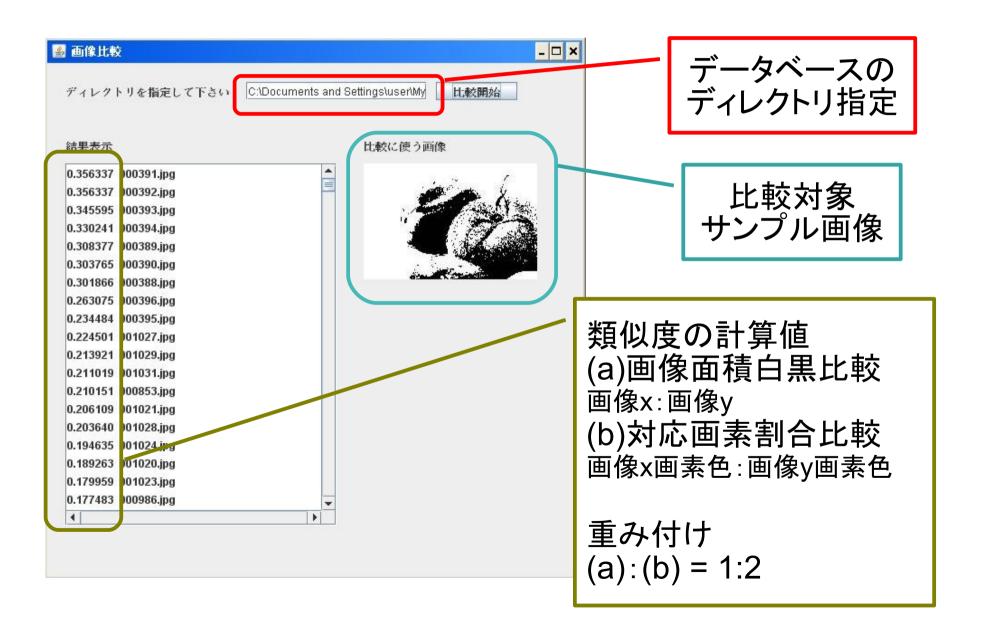
サンプル4

エッジ抽出処理

エッジ抽出画像の比較

画像データベース

画像処理

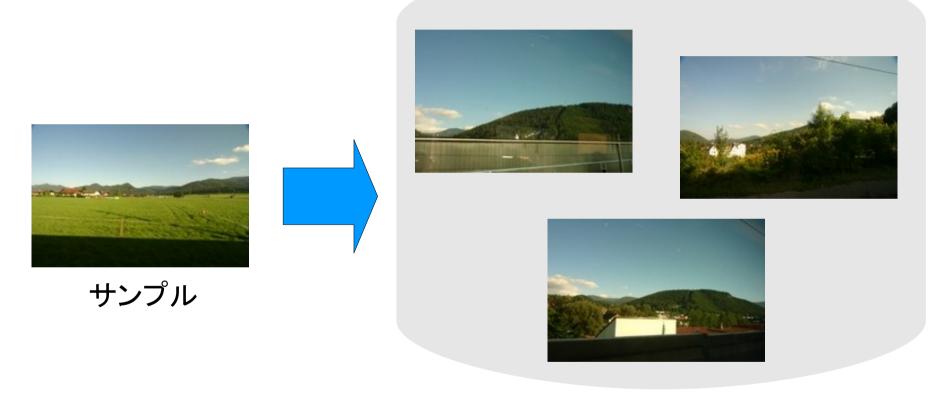

エッジ抽出後 画像データベース

類似画像型地類似度算出

所望画像の 入手 ユーザーによる 所望画像の確認

所望画像の 類似画像群

画像類似度順位システム


検索結果

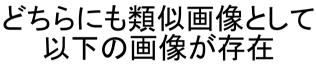
今回は対象画像データベース(1250枚)より 4枚を検索対象として選出、それぞれエッジ 抽出を施し画像群に対し類似比較を行った。

また第三者にサンプル画像を選出してもらい、同比較を試用してもらった。

結果、サンプル画像に類似する画像を類似 度順位の高位に多数検出された。これより、 エッジ抽出画像を用いた類似比較の検索精 度の向上性が得られた。

サンプル類似画像

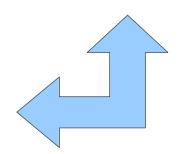
上位類似度データベース画像


考察

 どのサンプル画像においても類似画像の 絞込みは行えたが、異なるサンプル間で 同じ画像データが類似度の高位に存在していることも見受けられた。同画像データのエッジ抽出画像における類似度の偶然 のエッジ抽出画像における類似度の偶然 一致によるものと考えられるが、最終的な ユーザーの確認で所望の是非が行われる ので今回は軽視する。

他サンプル内の類似画像データ

サンプル2



高順位類似画像

サンプル4

画像のエッジ構成が全体的に横列重視

今後の課題

- 抽出すべきエッジとは関係の無いノイズ、 検索妨害となるノイズエッジへの対応
- システムの簡易化を行い、システム速度の 向上とともに上記対応の実施による検索 精度の低下を解消する
- 検索精度の確認時に画像を表示し、検索 画像の比較を容易にする
- 他検索システムや他者に対しても統計を 採り、汎用的な精度向上効果を図る